\(\int \frac {-a+b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\) [370]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 102 \[ \int \frac {-a+b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {(i a-b) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}-\frac {(i a+b) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d} \]

[Out]

(I*a-b)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/d/(a-I*b)^(1/2)-(I*a+b)*arctanh((a+b*tan(d*x+c))^(1/2)/(
a+I*b)^(1/2))/d/(a+I*b)^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {3620, 3618, 65, 214} \[ \int \frac {-a+b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {(-b+i a) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {(b+i a) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}} \]

[In]

Int[(-a + b*Tan[c + d*x])/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((I*a - b)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d) - ((I*a + b)*ArcTanh[Sqrt[a + b*
Tan[c + d*x]]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} (-a-i b) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx+\frac {1}{2} (-a+i b) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = -\frac {(i a-b) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}+\frac {(i a+b) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d} \\ & = \frac {(a-i b) \text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}+\frac {(a+i b) \text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d} \\ & = \frac {(i a-b) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}-\frac {(i a+b) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.07 \[ \int \frac {-a+b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {i \left ((a+i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )-(a-i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )\right )}{\sqrt {a-i b} \sqrt {a+i b} d} \]

[In]

Integrate[(-a + b*Tan[c + d*x])/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(I*((a + I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]] - (a - I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c
 + d*x]]/Sqrt[a + I*b]]))/(Sqrt[a - I*b]*Sqrt[a + I*b]*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1892\) vs. \(2(84)=168\).

Time = 0.09 (sec) , antiderivative size = 1893, normalized size of antiderivative = 18.56

method result size
parts \(\text {Expression too large to display}\) \(1893\)
derivativedivides \(\text {Expression too large to display}\) \(1905\)
default \(\text {Expression too large to display}\) \(1905\)

[In]

int((-a+b*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

b/d*(1/2/(a^2+b^2)^(1/2)*(-1/2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+
b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))+2*((a^2+b^2)^(1/2)-a)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(
d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)))+1/2/(a^2+b^2)^(1/2)*(1/2*(2*(a^2+
b^2)^(1/2)+2*a)^(1/2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))+
2*((a^2+b^2)^(1/2)-a)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(
1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))))-a*(1/4/d/b/(a^2+b^2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b
^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2+1/4/d*b/(a^2+b^2)*ln(b*tan(d*x+c)+a+(a
+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/4/d/b/(a^2
+b^2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^
2)^(1/2)+2*a)^(1/2)*a^3-1/4/d*b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*
a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*
arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2-1/d*b/(a^2+
b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a
^2+b^2)^(1/2)-2*a)^(1/2))+1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)
+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4+3/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*
a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+2/
d*b^3/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(
1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/4/d/b/(a^2+b^2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(
1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2-1/4/d*b/(a^2+b^2)*ln(b*tan(d*x+c)+a-(a+b*ta
n(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/4/d/b/(a^2+b^2)
^(3/2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1
/2)+2*a)^(1/2)*a^3+1/4/d*b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1
/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arcta
n((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2-1/d*b/(a^2+b^2)^
(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^
2)^(1/2)-2*a)^(1/2))+1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(
a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4+3/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1
/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+2/d*b^3
/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))
/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1115 vs. \(2 (78) = 156\).

Time = 0.26 (sec) , antiderivative size = 1115, normalized size of antiderivative = 10.93 \[ \int \frac {-a+b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((-a+b*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(-((a^2 + b^2)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a^3 - 3*a*b^2)
/((a^2 + b^2)*d^2))*log(-(3*a^4*b + 2*a^2*b^3 - b^5)*sqrt(b*tan(d*x + c) + a) + ((a^4 - b^4)*d^3*sqrt(-(9*a^4*
b^2 - 6*a^2*b^4 + b^6)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + 2*(3*a^3*b^2 - a*b^4)*d)*sqrt(-((a^2 + b^2)*d^2*sqrt(-
(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a^3 - 3*a*b^2)/((a^2 + b^2)*d^2))) - 1/2*sqrt(-
((a^2 + b^2)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a^3 - 3*a*b^2)/((a^2 + b
^2)*d^2))*log(-(3*a^4*b + 2*a^2*b^3 - b^5)*sqrt(b*tan(d*x + c) + a) - ((a^4 - b^4)*d^3*sqrt(-(9*a^4*b^2 - 6*a^
2*b^4 + b^6)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + 2*(3*a^3*b^2 - a*b^4)*d)*sqrt(-((a^2 + b^2)*d^2*sqrt(-(9*a^4*b^2
 - 6*a^2*b^4 + b^6)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a^3 - 3*a*b^2)/((a^2 + b^2)*d^2))) - 1/2*sqrt(((a^2 + b^2
)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - a^3 + 3*a*b^2)/((a^2 + b^2)*d^2))*l
og(-(3*a^4*b + 2*a^2*b^3 - b^5)*sqrt(b*tan(d*x + c) + a) + ((a^4 - b^4)*d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6
)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*(3*a^3*b^2 - a*b^4)*d)*sqrt(((a^2 + b^2)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4
 + b^6)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - a^3 + 3*a*b^2)/((a^2 + b^2)*d^2))) + 1/2*sqrt(((a^2 + b^2)*d^2*sqrt(-
(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - a^3 + 3*a*b^2)/((a^2 + b^2)*d^2))*log(-(3*a^4*b
 + 2*a^2*b^3 - b^5)*sqrt(b*tan(d*x + c) + a) - ((a^4 - b^4)*d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^4 + 2*
a^2*b^2 + b^4)*d^4)) - 2*(3*a^3*b^2 - a*b^4)*d)*sqrt(((a^2 + b^2)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^
4 + 2*a^2*b^2 + b^4)*d^4)) - a^3 + 3*a*b^2)/((a^2 + b^2)*d^2)))

Sympy [F]

\[ \int \frac {-a+b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=- \int \frac {a}{\sqrt {a + b \tan {\left (c + d x \right )}}}\, dx - \int \left (- \frac {b \tan {\left (c + d x \right )}}{\sqrt {a + b \tan {\left (c + d x \right )}}}\right )\, dx \]

[In]

integrate((-a+b*tan(d*x+c))/(a+b*tan(d*x+c))**(1/2),x)

[Out]

-Integral(a/sqrt(a + b*tan(c + d*x)), x) - Integral(-b*tan(c + d*x)/sqrt(a + b*tan(c + d*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {-a+b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((-a+b*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is

Giac [F(-1)]

Timed out. \[ \int \frac {-a+b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((-a+b*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 10.32 (sec) , antiderivative size = 2731, normalized size of antiderivative = 26.77 \[ \int \frac {-a+b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

[In]

int(-(a - b*tan(c + d*x))/(a + b*tan(c + d*x))^(1/2),x)

[Out]

2*atanh((32*a^2*b^2*((-16*a^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (a^3*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/
2)*(a + b*tan(c + d*x))^(1/2))/((16*a^4*b^3*d^3)/(a^2*d^4 + b^2*d^4) - (4*a*b^3*d^2*(-16*a^4*b^2*d^4)^(1/2))/(
a^2*d^5 + b^2*d^5)) + (8*a*b^2*((-16*a^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (a^3*d^2)/(4*(a^2*d^4 + b^2
*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-16*a^4*b^2*d^4)^(1/2))/((16*a^4*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (16*
a^6*b^3*d^5)/(a^2*d^4 + b^2*d^4) - (4*a^3*b^3*d^4*(-16*a^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) - (4*a*b^5*d^4*
(-16*a^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) - (32*a^4*b^2*d^2*((-16*a^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^
4)) - (a^3*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*a^4*b^5*d^5)/(a^2*d^4 + b^2*d^
4) + (16*a^6*b^3*d^5)/(a^2*d^4 + b^2*d^4) - (4*a^3*b^3*d^4*(-16*a^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) - (4*a
*b^5*d^4*(-16*a^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*((-16*a^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (a
^3*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2) - 2*atanh((32*a^2*b^4*d^2*((-16*b^6*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4))
 + (a*b^2*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*a^2*b^7*d^5)/(a^2*d^4 + b^2*d^4
) - 16*a^2*b^5*d - 16*b^7*d + (16*a^4*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (4*a*b^5*d^4*(-16*b^6*d^4)^(1/2))/(a^2*d^
5 + b^2*d^5) + (4*a^3*b^3*d^4*(-16*b^6*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) - (32*b^4*((-16*b^6*d^4)^(1/2)/(16*(a^
2*d^4 + b^2*d^4)) + (a*b^2*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*a^2*b^5*d^3)/(
a^2*d^4 + b^2*d^4) - (16*b^5)/d + (4*a*b^3*d^2*(-16*b^6*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (8*a*b^2*((-16*b^6*
d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) + (a*b^2*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-
16*b^6*d^4)^(1/2))/((16*a^2*b^7*d^5)/(a^2*d^4 + b^2*d^4) - 16*a^2*b^5*d - 16*b^7*d + (16*a^4*b^5*d^5)/(a^2*d^4
 + b^2*d^4) + (4*a*b^5*d^4*(-16*b^6*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*a^3*b^3*d^4*(-16*b^6*d^4)^(1/2))/(a^2
*d^5 + b^2*d^5)))*((-16*b^6*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) + (a*b^2*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2) -
 2*atanh((32*b^4*((a*b^2*d^2)/(4*(a^2*d^4 + b^2*d^4)) - (-16*b^6*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2)*(a
 + b*tan(c + d*x))^(1/2))/((16*b^5)/d - (16*a^2*b^5*d^3)/(a^2*d^4 + b^2*d^4) + (4*a*b^3*d^2*(-16*b^6*d^4)^(1/2
))/(a^2*d^5 + b^2*d^5)) - (32*a^2*b^4*d^2*((a*b^2*d^2)/(4*(a^2*d^4 + b^2*d^4)) - (-16*b^6*d^4)^(1/2)/(16*(a^2*
d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/(16*b^7*d + 16*a^2*b^5*d - (16*a^2*b^7*d^5)/(a^2*d^4 + b^2*
d^4) - (16*a^4*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (4*a*b^5*d^4*(-16*b^6*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*a^3*b
^3*d^4*(-16*b^6*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (8*a*b^2*((a*b^2*d^2)/(4*(a^2*d^4 + b^2*d^4)) - (-16*b^6*d^
4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-16*b^6*d^4)^(1/2))/(16*b^7*d + 16*a^2*b^
5*d - (16*a^2*b^7*d^5)/(a^2*d^4 + b^2*d^4) - (16*a^4*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (4*a*b^5*d^4*(-16*b^6*d^4)
^(1/2))/(a^2*d^5 + b^2*d^5) + (4*a^3*b^3*d^4*(-16*b^6*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*((a*b^2*d^2)/(4*(a^2*d
^4 + b^2*d^4)) - (-16*b^6*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2) - 2*atanh((8*a*b^2*(- (-16*a^4*b^2*d^4)^(
1/2)/(16*(a^2*d^4 + b^2*d^4)) - (a^3*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-16*a^4*b
^2*d^4)^(1/2))/((16*a^4*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (16*a^6*b^3*d^5)/(a^2*d^4 + b^2*d^4) + (4*a^3*b^3*d^4*(
-16*a^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*a*b^5*d^4*(-16*a^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) - (32
*a^2*b^2*(- (-16*a^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (a^3*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b
*tan(c + d*x))^(1/2))/((16*a^4*b^3*d^3)/(a^2*d^4 + b^2*d^4) + (4*a*b^3*d^2*(-16*a^4*b^2*d^4)^(1/2))/(a^2*d^5 +
 b^2*d^5)) + (32*a^4*b^2*d^2*(- (-16*a^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (a^3*d^2)/(4*(a^2*d^4 + b^2
*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*a^4*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (16*a^6*b^3*d^5)/(a^2*d^4 +
b^2*d^4) + (4*a^3*b^3*d^4*(-16*a^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*a*b^5*d^4*(-16*a^4*b^2*d^4)^(1/2))
/(a^2*d^5 + b^2*d^5)))*(- (-16*a^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (a^3*d^2)/(4*(a^2*d^4 + b^2*d^4))
)^(1/2)